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Functionalized azobenzenes through cross-coupling
with organotrifluoroborates
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Abstract—The development of an azobenzene building block for Suzuki couplings and its application in the synthesis of photochro-
mic agonists and antagonists is reported.
� 2006 Elsevier Ltd. All rights reserved.
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Azobenzene photoswitches are valuable tools to influ-
ence protein activity.1–4 Generally, the strategies em-
ployed to this end have involved (a) covalent
attachment of an azobenzene derivative to the protein5

or (b) use of an azobenzene derivative as a noncova-
lently bound photochromic ligand, where one isomer
has a greater affinity for the protein than the other.6–8

Classical methods for the synthesis of azobenzenes in-
clude electrophilic aromatic substitution involving aryl
diazonium salts, condensation of nitrosobenzenes with
anilines, and oxidative coupling of two anilines.9–12

More recently, Buchwald-type couplings of aryl hydra-
zines with aryl iodides, followed by oxidation, have been
employed (Fig. 1).13

Further functionalization of azobenzenes typically in-
volves amide, carbamate, ester, or ether linkages. Thus,
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Figure 1. Azobenzene synthesis.
functionalization possibilities have mostly been limited
to elaborations that do not involve the formation of car-
bon–carbon bonds. In the context of developing photo-
chromic ligands, we became interested in cross-coupling
azobenzenes with heterocyclic building blocks function-
alized as iodides. Although cross-couplings have been
reported for azo bond formation,10 they have rarely
been used to append azobenzenes to a ligand scaf-
fold.14–16 We now wish to report a general method for
attaching the azobenzene moiety onto aryl and vinyl
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Figure 2. Retrosynthetic analysis of azobenzene 1.
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Scheme 1. Ester synthesis via diazotization.
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Scheme 2. Ester synthesis via condensation.
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Scheme 3. Suzuki coupling of the trifluoroborate azobenzene.
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iodides. This method proceeds via a Suzuki cross-
coupling reaction employing an azobenzene
trifluoroborate.17

Our interest in azobenzene derivatization was estab-
lished during the synthesis of compound 1, which was
developed as a photoswitchable kinase inhibitor. The
Table 1. Suzuki coupling reactions

N
N
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Product R Cond

14a
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PdCl2
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OO

PdCl2

14c

CHO

OH
O

PdCl2
pyrrolopyrimidine part of this molecule is derived from
the known Src kinase inhibitor PP1 (4).18 We planned to
form the central bond of 1 through cross-coupling of the
known iodo pyrrolopyrimidine 219 with an appropriate
azobenzene partner 3 (Fig. 2).

Our first target was therefore an azobenzene boronic
acid 9, which we hoped would undergo a cross-coupling
reaction with 2 (Scheme 1).20 Synthesis of the target azo-
benzene proceeded via two different possible routes. The
first route began with diazonium coupling of aniline
with phenol, followed by triflation to yield triflate 7. Pal-
ladium-catalyzed cross-coupling of 7 with bis(pinaco-
lato)diboron gave boronic ester 8 (Scheme 1). The
second route gave boronic ester 8 in one step via the
condensation of commercially available aniline boronic
ester 11 with nitrosobenzene 10 (Scheme 2).
N
N

R

14

itions Yield (%)

(dppf), Cs2CO3, MeOH, 65 �C, 3.5 h 72

(dppf), Cs2CO3, MeOH, 65 �C, 18 h 41

(dppf), Cs2CO3, MeOH, 65 �C, 4.7 h 49



Table 1 (continued)

Product R Conditions Yield (%)

14d

O

PdCl2(dppf), K2CO3, MeOH, 65 �C, 2 h 65

14e
S

PdCl2(dppf), K2CO3, MeOH, 65 �C, 2 h 61

14f

NH2

Pd(OAc)2, PPh3, K2CO3, MeOH, 65 �C, 14 h 61

14g

NO2

PdCl2(dppf), Cs2CO3, MeOH, 65 �C, 3.5 h 66

14h
O

O O

PdCl2(dppf), K2CO3, MeOH, 65 �C, 17 h 60

14i

F
PdCl2(dppf), Cs2CO3, MeOH, 65 �C, 2 h 47

14j
OH

PdCl2(dppf), iPr2NEt, MeOH, 65 �C, 2 h 61

a The product was the methyl ester. When ethanol was used as the solvent, ethyl ester was produced in a 14% yield.
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Unfortunately, attempted hydrolysis of 8 resulted in the
recovery of starting material, inseparable mixtures, or
decomposition.21–23 In one case, in which NaIO4 was
employed, the boronic ester was successfully hydro-
lyzed, but oxidation of the azo bond also occurred.
We therefore attempted the Suzuki coupling with the
parent boronic ester 8. However, these conditions
resulted in consistently low yields (<20%).

We then decided to convert the boronic ester into the
corresponding trifluoroborate salt, using the conditions
developed by Molander.17 Hydrolysis of the ester using
KHF2 gave the azobenzene trifluoroborate salt 12,
which was again subjected to cross-coupling conditions
to afford the desired compound 1 in a 59% yield (Scheme
3).

To map the functional group compatibility of this reac-
tion, we have employed the azobenzene trifluoroborate
12 in Suzuki reactions with a variety of vinylic and aro-
matic iodides (Table 1). The reaction was found to pro-
ceed well with both electron-donating and withdrawing
vinylic and aromatic iodides.24 A wide range of func-
tional groups was compatible with the reaction, includ-
ing aldehydes, alcohols, ketones, anilines, phenols,
esters, aryl fluorides, and various heterocycles.

All of the starting iodides were commercially available
except 13b and 13i, which have been previously de-
scribed.25,26 The reaction was usually carried out with
PdCl2(dppf) in refluxing methanol. When triphenyl
phosphine was used as a ligand or under microwave
conditions, yields typically decreased.

In summary, we have described the application of a re-
cently developed variant of the Suzuki reaction for azo-
benzene functionalization via carbon–carbon bond
formation. The biological evaluation of compound 1 is
under investigation, and the results will be reported in
due course.
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Supplementary data associated with this article can be
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